home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-15 | 5.4 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | b5 14 00 00 bb 00 00 00 |TUTOR 06|........|
|00000010| 53 65 63 74 69 6f 6e 20 | 32 2e 33 20 20 41 6e 61 |Section |2.3 Ana|
|00000020| 6c 79 7a 69 6e 67 20 47 | 72 61 70 68 73 20 6f 66 |lyzing G|raphs of|
|00000030| 20 46 75 6e 63 74 69 6f | 6e 73 0d 0b 00 46 6f 72 | Functio|ns...For|
|00000040| 20 6d 6f 72 65 20 70 72 | 61 63 74 69 63 65 3a 0d | more pr|actice:.|
|00000050| 0a 00 0d 0a 00 20 20 20 | 20 20 10 32 2d 33 2d 33 |..... | .2-3-3|
|00000060| 0e 78 32 2d 33 0e 45 78 | 65 72 63 69 73 65 73 0f |.x2-3.Ex|ercises.|
|00000070| 0d 0a 00 20 20 20 20 20 | 10 32 2d 33 2d 32 0e 65 |... |.2-3-2.e|
|00000080| 32 2d 33 0e 47 75 69 64 | 65 64 20 45 78 65 72 63 |2-3.Guid|ed Exerc|
|00000090| 69 73 65 73 0f 0d 0a 00 | 0d 0a 00 54 6f 70 69 63 |ises....|...Topic|
|000000a0| 73 20 66 6f 72 20 65 78 | 70 6c 6f 72 61 74 69 6f |s for ex|ploratio|
|000000b0| 6e 3a 0d 0a 00 0d 0a 00 | 20 20 20 20 20 0e 73 32 |n:......| .s2|
|000000c0| 2d 33 2d 31 0e 54 68 65 | 20 47 72 61 70 68 20 6f |-3-1.The| Graph o|
|000000d0| 66 20 61 20 46 75 6e 63 | 74 69 6f 6e 0f 0d 0a 00 |f a Func|tion....|
|000000e0| 20 20 20 20 20 0e 73 32 | 2d 33 2d 32 0e 56 65 72 | .s2|-3-2.Ver|
|000000f0| 74 69 63 61 6c 20 4c 69 | 6e 65 20 54 65 73 74 0f |tical Li|ne Test.|
|00000100| 0d 0a 00 20 20 20 20 20 | 0e 73 32 2d 33 2d 33 0e |... |.s2-3-3.|
|00000110| 49 6e 63 72 65 61 73 69 | 6e 67 2c 20 44 65 63 72 |Increasi|ng, Decr|
|00000120| 65 61 73 69 6e 67 2c 20 | 61 6e 64 20 43 6f 6e 73 |easing, |and Cons|
|00000130| 74 61 6e 74 20 46 75 6e | 63 74 69 6f 6e 73 0f 0d |tant Fun|ctions..|
|00000140| 0a 00 20 20 20 20 20 0e | 73 32 2d 33 2d 34 0e 45 |.. .|s2-3-4.E|
|00000150| 76 65 6e 20 61 6e 64 20 | 4f 64 64 20 46 75 6e 63 |ven and |Odd Func|
|00000160| 74 69 6f 6e 73 0f 0d 0a | 00 20 20 20 20 20 0e 73 |tions...|. .s|
|00000170| 32 2d 33 2d 35 0e 47 72 | 61 70 68 73 20 6f 66 20 |2-3-5.Gr|aphs of |
|00000180| 43 6f 6d 6d 6f 6e 20 46 | 75 6e 63 74 69 6f 6e 73 |Common F|unctions|
|00000190| 0f 0d 0a 00 20 20 20 20 | 20 0e 73 32 2d 33 2d 36 |.... | .s2-3-6|
|000001a0| 0e 53 74 65 70 20 46 75 | 6e 63 74 69 6f 6e 73 0f |.Step Fu|nctions.|
|000001b0| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 32 2e 33 20 20 |...Secti|on 2.3 |
|000001c0| 41 6e 61 6c 79 7a 69 6e | 67 20 47 72 61 70 68 73 |Analyzin|g Graphs|
|000001d0| 20 6f 66 20 46 75 6e 63 | 74 69 6f 6e 73 0d 0b 00 | of Func|tions...|
|000001e0| 54 68 65 20 12 31 67 72 | 61 70 68 20 6f 66 20 61 |The .1gr|aph of a|
|000001f0| 20 66 75 6e 63 74 69 6f | 6e 12 30 20 77 68 6f 73 | functio|n.0 whos|
|00000200| 65 20 69 6e 64 65 70 65 | 6e 64 65 6e 74 20 76 61 |e indepe|ndent va|
|00000210| 72 69 61 62 6c 65 20 61 | 6e 64 20 64 65 70 65 6e |riable a|nd depen|
|00000220| 64 65 6e 74 20 76 61 72 | 69 61 62 6c 65 0d 0a 00 |dent var|iable...|
|00000230| 72 65 70 72 65 73 65 6e | 74 20 72 65 61 6c 20 6e |represen|t real n|
|00000240| 75 6d 62 65 72 73 20 69 | 73 20 74 68 65 20 73 65 |umbers i|s the se|
|00000250| 74 20 6f 66 20 6f 72 64 | 65 72 65 64 20 70 61 69 |t of ord|ered pai|
|00000260| 72 73 20 28 11 33 78 11 | 31 2c 20 11 33 66 11 31 |rs (.3x.|1, .3f.1|
|00000270| 28 11 33 78 11 31 29 29 | 2c 20 77 68 65 72 65 20 |(.3x.1))|, where |
|00000280| 11 33 78 20 11 31 69 73 | 20 69 6e 0d 0a 00 74 68 |.3x .1is| in...th|
|00000290| 65 20 64 6f 6d 61 69 6e | 20 6f 66 20 11 33 66 11 |e domain| of .3f.|
|000002a0| 31 2e 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |1.......| |
|000002b0| 20 20 20 20 20 20 20 11 | 33 78 20 11 31 3d 20 11 | .|3x .1= .|
|000002c0| 33 78 11 31 2d 63 6f 6f | 72 64 69 6e 61 74 65 20 |3x.1-coo|rdinate |
|000002d0| 6f 66 20 74 68 65 20 6f | 72 64 65 72 65 64 20 70 |of the o|rdered p|
|000002e0| 61 69 72 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 |air.....|. |
|000002f0| 20 20 20 20 20 11 33 66 | 11 31 28 11 33 78 11 31 | .3f|.1(.3x.1|
|00000300| 29 20 3d 20 11 33 79 11 | 31 2d 63 6f 6f 72 64 69 |) = .3y.|1-coordi|
|00000310| 6e 61 74 65 20 6f 66 20 | 74 68 65 20 6f 72 64 65 |nate of |the orde|
|00000320| 72 65 64 20 70 61 69 72 | 0d 0a 00 0d 0b 00 54 68 |red pair|......Th|
|00000330| 65 20 66 69 67 75 72 65 | 20 62 65 6c 6f 77 20 73 |e figure| below s|
|00000340| 68 6f 77 73 20 61 20 74 | 79 70 69 63 61 6c 20 67 |hows a t|ypical g|
|00000350| 72 61 70 68 20 6f 66 20 | 61 20 66 75 6e 63 74 69 |raph of |a functi|
|00000360| 6f 6e 2e 20 20 54 6f 20 | 12 31 73 6b 65 74 63 68 |on. To |.1sketch|
|00000370| 20 74 68 65 20 67 72 61 | 70 68 20 6f 66 0d 0a 00 | the gra|ph of...|
|00000380| 61 20 66 75 6e 63 74 69 | 6f 6e 12 30 2c 20 77 65 |a functi|on.0, we|
|00000390| 20 75 73 65 20 74 68 65 | 20 73 61 6d 65 20 70 72 | use the| same pr|
|000003a0| 6f 63 65 64 75 72 65 73 | 20 64 69 73 63 75 73 73 |ocedures| discuss|
|000003b0| 65 64 20 69 6e 20 53 65 | 63 74 69 6f 6e 20 31 2e |ed in Se|ction 1.|
|000003c0| 31 20 66 6f 72 20 73 6b | 65 74 63 68 69 6e 67 0d |1 for sk|etching.|
|000003d0| 0a 00 74 68 65 20 67 72 | 61 70 68 20 6f 66 20 61 |..the gr|aph of a|
|000003e0| 6e 20 65 71 75 61 74 69 | 6f 6e 2e 0d 0a 00 0d 0a |n equati|on......|
|000003f0| 00 0d 0a 00 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |....... | |
|00000400| 20 20 20 20 20 14 74 33 | 2d 35 2d 31 2e 6d 14 32 | .t3|-5-1.m.2|
|00000410| 38 14 32 31 14 36 30 14 | 38 14 0d 0a 00 0d 0a 00 |8.21.60.|8.......|
|00000420| 0d 0a 00 0d 0a 00 0d 0a | 00 0d 0a 00 53 65 63 74 |........|....Sect|
|00000430| 69 6f 6e 20 32 2e 33 20 | 20 41 6e 61 6c 79 7a 69 |ion 2.3 | Analyzi|
|00000440| 6e 67 20 47 72 61 70 68 | 73 20 6f 66 20 46 75 6e |ng Graph|s of Fun|
|00000450| 63 74 69 6f 6e 73 0d 0b | 00 42 79 20 74 68 65 20 |ctions..|.By the |
|00000460| 64 65 66 69 6e 69 74 69 | 6f 6e 20 6f 66 20 61 20 |definiti|on of a |
|00000470| 66 75 6e 63 74 69 6f 6e | 2c 20 61 74 20 6d 6f 73 |function|, at mos|
|00000480| 74 20 6f 6e 65 20 11 33 | 79 11 31 2d 76 61 6c 75 |t one .3|y.1-valu|
|00000490| 65 20 63 6f 72 72 65 73 | 70 6f 6e 64 73 20 74 6f |e corres|ponds to|
|000004a0| 20 61 20 67 69 76 65 6e | 0d 0a 00 11 33 78 11 31 | a given|....3x.1|
|000004b0| 2d 76 61 6c 75 65 2e 20 | 20 49 74 20 66 6f 6c 6c |-value. | It foll|
|000004c0| 6f 77 73 2c 20 74 68 65 | 6e 2c 20 74 68 61 74 20 |ows, the|n, that |
|000004d0| 61 20 76 65 72 74 69 63 | 61 6c 20 6c 69 6e 65 20 |a vertic|al line |
|000004e0| 63 61 6e 20 69 6e 74 65 | 72 73 65 63 74 20 74 68 |can inte|rsect th|
|000004f0| 65 20 67 72 61 70 68 20 | 6f 66 20 61 0d 0a 00 66 |e graph |of a...f|
|00000500| 75 6e 63 74 69 6f 6e 20 | 61 74 20 6d 6f 73 74 20 |unction |at most |
|00000510| 6f 6e 63 65 2e 20 20 54 | 68 69 73 20 69 6d 70 6f |once. T|his impo|
|00000520| 72 74 61 6e 74 20 6f 62 | 73 65 72 76 61 74 69 6f |rtant ob|servatio|
|00000530| 6e 20 70 72 6f 76 69 64 | 65 73 20 75 73 20 77 69 |n provid|es us wi|
|00000540| 74 68 20 61 20 0d 0a 00 | 63 6f 6e 76 65 6e 69 65 |th a ...|convenie|
|00000550| 6e 74 20 76 69 73 75 61 | 6c 20 74 65 73 74 20 66 |nt visua|l test f|
|00000560| 6f 72 20 61 20 66 75 6e | 63 74 69 6f 6e 2e 20 20 |or a fun|ction. |
|00000570| 57 65 20 63 61 6c 6c 20 | 74 68 69 73 20 74 65 73 |We call |this tes|
|00000580| 74 20 74 68 65 20 12 31 | 76 65 72 74 69 63 61 6c |t the .1|vertical|
|00000590| 20 6c 69 6e 65 0d 0a 00 | 74 65 73 74 20 66 6f 72 | line...|test for|
|000005a0| 20 66 75 6e 63 74 69 6f | 6e 73 12 30 2e 20 20 41 | functio|ns.0. A|
|000005b0| 20 66 6f 72 6d 61 6c 20 | 73 74 61 74 65 6d 65 6e | formal |statemen|
|000005c0| 74 20 6f 66 20 74 68 69 | 73 20 74 65 73 74 20 69 |t of thi|s test i|
|000005d0| 73 20 67 69 76 65 6e 20 | 62 65 6c 6f 77 2e 0d 0a |s given |below...|
|000005e0| 00 0d 0b 00 20 20 20 20 | 20 41 20 73 65 74 20 6f |.... | A set o|
|000005f0| 66 20 70 6f 69 6e 74 73 | 20 69 6e 20 61 20 72 65 |f points| in a re|
|00000600| 63 74 61 6e 67 75 6c 61 | 72 20 63 6f 6f 72 64 69 |ctangula|r coordi|
|00000610| 6e 61 74 65 20 73 79 73 | 74 65 6d 20 69 73 20 74 |nate sys|tem is t|
|00000620| 68 65 20 67 72 61 70 68 | 20 6f 66 20 11 33 79 0d |he graph| of .3y.|
|00000630| 0a 00 20 20 20 20 20 11 | 31 61 73 20 61 20 66 75 |.. .|1as a fu|
|00000640| 6e 63 74 69 6f 6e 20 6f | 66 20 11 33 78 20 11 31 |nction o|f .3x .1|
|00000650| 69 66 20 61 6e 64 20 6f | 6e 6c 79 20 69 66 20 6e |if and o|nly if n|
|00000660| 6f 20 76 65 72 74 69 63 | 61 6c 20 6c 69 6e 65 20 |o vertic|al line |
|00000670| 69 6e 74 65 72 73 65 63 | 74 73 20 74 68 65 20 0d |intersec|ts the .|
|00000680| 0a 00 20 20 20 20 20 67 | 72 61 70 68 20 61 74 20 |.. g|raph at |
|00000690| 6d 6f 72 65 20 74 68 61 | 6e 20 6f 6e 65 20 70 6f |more tha|n one po|
|000006a0| 69 6e 74 2e 0d 0a 00 0d | 0b 00 54 68 65 20 76 65 |int.....|..The ve|
|000006b0| 72 74 69 63 61 6c 20 6c | 69 6e 65 20 74 65 73 74 |rtical l|ine test|
|000006c0| 20 70 72 6f 76 69 64 65 | 73 20 75 73 20 77 69 74 | provide|s us wit|
|000006d0| 68 20 61 6e 20 65 61 73 | 79 20 77 61 79 20 74 6f |h an eas|y way to|
|000006e0| 20 64 65 74 65 72 6d 69 | 6e 65 20 77 68 65 74 68 | determi|ne wheth|
|000006f0| 65 72 20 61 6e 0d 0a 00 | 65 71 75 61 74 69 6f 6e |er an...|equation|
|00000700| 20 72 65 70 72 65 73 65 | 6e 74 73 20 11 33 79 20 | represe|nts .3y |
|00000710| 11 31 61 73 20 61 20 66 | 75 6e 63 74 69 6f 6e 20 |.1as a f|unction |
|00000720| 6f 66 20 11 33 78 11 31 | 2e 20 20 49 66 20 74 68 |of .3x.1|. If th|
|00000730| 65 20 67 72 61 70 68 20 | 6f 66 20 61 6e 20 65 71 |e graph |of an eq|
|00000740| 75 61 74 69 6f 6e 20 68 | 61 73 0d 0a 00 74 68 65 |uation h|as...the|
|00000750| 20 70 72 6f 70 65 72 74 | 79 20 74 68 61 74 20 6e | propert|y that n|
|00000760| 6f 20 76 65 72 74 69 63 | 61 6c 20 6c 69 6e 65 20 |o vertic|al line |
|00000770| 69 6e 74 65 72 73 65 63 | 74 73 20 74 68 65 20 67 |intersec|ts the g|
|00000780| 72 61 70 68 20 61 74 20 | 74 77 6f 20 28 6f 72 20 |raph at |two (or |
|00000790| 6d 6f 72 65 29 20 0d 0a | 00 70 6f 69 6e 74 73 2c |more) ..|.points,|
|000007a0| 20 74 68 65 6e 20 74 68 | 65 20 65 71 75 61 74 69 | then th|e equati|
|000007b0| 6f 6e 20 72 65 70 72 65 | 73 65 6e 74 73 20 11 33 |on repre|sents .3|
|000007c0| 79 20 11 31 61 73 20 61 | 20 66 75 6e 63 74 69 6f |y .1as a| functio|
|000007d0| 6e 20 6f 66 20 11 33 78 | 11 31 2e 20 20 4f 6e 20 |n of .3x|.1. On |
|000007e0| 74 68 65 20 6f 74 68 65 | 72 20 68 61 6e 64 2c 0d |the othe|r hand,.|
|000007f0| 0a 00 69 66 20 79 6f 75 | 20 63 61 6e 20 66 69 6e |..if you| can fin|
|00000800| 64 20 61 20 76 65 72 74 | 69 63 61 6c 20 6c 69 6e |d a vert|ical lin|
|00000810| 65 20 74 68 61 74 20 69 | 6e 74 65 72 73 65 63 74 |e that i|ntersect|
|00000820| 73 20 74 68 65 20 67 72 | 61 70 68 20 61 74 20 74 |s the gr|aph at t|
|00000830| 77 6f 20 28 6f 72 20 6d | 6f 72 65 29 0d 0a 00 70 |wo (or m|ore)...p|
|00000840| 6f 69 6e 74 73 2c 20 74 | 68 65 6e 20 74 68 65 20 |oints, t|hen the |
|00000850| 65 71 75 61 74 69 6f 6e | 20 64 6f 65 73 20 6e 6f |equation| does no|
|00000860| 74 20 72 65 70 72 65 73 | 65 6e 74 20 11 33 79 20 |t repres|ent .3y |
|00000870| 11 31 61 73 20 61 20 66 | 75 6e 63 74 69 6f 6e 20 |.1as a f|unction |
|00000880| 6f 66 20 11 33 78 11 31 | 2e 0d 0a 00 53 65 63 74 |of .3x.1|....Sect|
|00000890| 69 6f 6e 20 32 2e 33 20 | 20 41 6e 61 6c 79 7a 69 |ion 2.3 | Analyzi|
|000008a0| 6e 67 20 47 72 61 70 68 | 73 20 6f 66 20 46 75 6e |ng Graph|s of Fun|
|000008b0| 63 74 69 6f 6e 73 0d 0b | 00 20 20 20 20 20 20 20 |ctions..|. |
|000008c0| 20 20 20 20 20 20 20 20 | 12 31 49 6e 63 72 65 61 | |.1Increa|
|000008d0| 73 69 6e 67 2c 20 44 65 | 63 72 65 61 73 69 6e 67 |sing, De|creasing|
|000008e0| 2c 20 61 6e 64 20 43 6f | 6e 73 74 61 6e 74 20 46 |, and Co|nstant F|
|000008f0| 75 6e 63 74 69 6f 6e 73 | 12 30 0d 0a 00 0d 0b 00 |unctions|.0......|
|00000900| 41 20 66 75 6e 63 74 69 | 6f 6e 20 11 33 66 20 11 |A functi|on .3f .|
|00000910| 31 69 73 20 12 31 69 6e | 63 72 65 61 73 69 6e 67 |1is .1in|creasing|
|00000920| 12 30 20 6f 6e 20 61 6e | 20 69 6e 74 65 72 76 61 |.0 on an| interva|
|00000930| 6c 20 69 66 2c 20 66 6f | 72 20 61 6e 79 20 11 33 |l if, fo|r any .3|
|00000940| 78 20 20 11 31 61 6e 64 | 20 11 33 78 20 20 11 31 |x .1and| .3x .1|
|00000950| 69 6e 20 74 68 65 0d 0b | 00 20 20 20 20 20 20 20 |in the..|. |
|00000960| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000970| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000980| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000990| 11 32 31 20 20 20 20 20 | 20 32 0d 0a 00 11 31 69 |.21 | 2....1i|
|000009a0| 6e 74 65 72 76 61 6c 2c | 0d 0a 00 0d 0b 00 20 20 |nterval,|...... |
|000009b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009c0| 11 33 78 20 20 11 31 3c | 20 11 33 78 20 20 20 20 |.3x .1<| .3x |
|000009d0| 20 20 11 31 69 6d 70 6c | 69 65 73 20 20 20 20 20 | .1impl|ies |
|000009e0| 11 33 66 11 31 28 11 33 | 78 20 11 31 29 20 3c 20 |.3f.1(.3|x .1) < |
|000009f0| 11 33 66 11 31 28 11 33 | 78 20 11 31 29 2e 0d 0b |.3f.1(.3|x .1)...|
|00000a00| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000a10| 20 20 20 20 11 32 31 20 | 20 20 20 32 20 20 20 20 | .21 | 2 |
|00000a20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a30| 31 20 20 20 20 20 20 20 | 32 0d 0a 00 0d 0b 00 11 |1 |2.......|
|00000a40| 31 41 20 66 75 6e 63 74 | 69 6f 6e 20 11 33 66 20 |1A funct|ion .3f |
|00000a50| 11 31 69 73 20 12 31 64 | 65 63 72 65 61 73 69 6e |.1is .1d|ecreasin|
|00000a60| 67 12 30 20 6f 6e 20 61 | 6e 20 69 6e 74 65 72 76 |g.0 on a|n interv|
|00000a70| 61 6c 20 69 66 2c 20 66 | 6f 72 20 61 6e 79 20 11 |al if, f|or any .|
|00000a80| 33 78 20 20 11 31 61 6e | 64 20 11 33 78 20 20 11 |3x .1an|d .3x .|
|00000a90| 31 69 6e 20 74 68 65 0d | 0b 00 20 20 20 20 20 20 |1in the.|.. |
|00000aa0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ab0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ac0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ad0| 20 11 32 31 20 20 20 20 | 20 20 32 0d 0a 00 11 31 | .21 | 2....1|
|00000ae0| 69 6e 74 65 72 76 61 6c | 2c 0d 0a 00 0d 0b 00 20 |interval|,...... |
|00000af0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b00| 20 11 33 78 20 20 11 31 | 3c 20 11 33 78 20 20 20 | .3x .1|< .3x |
|00000b10| 20 20 20 11 31 69 6d 70 | 6c 69 65 73 20 20 20 20 | .1imp|lies |
|00000b20| 20 11 33 66 11 31 28 11 | 33 78 20 11 31 29 20 3e | .3f.1(.|3x .1) >|
|00000b30| 20 11 33 66 11 31 28 11 | 33 78 20 11 31 29 2e 0d | .3f.1(.|3x .1)..|
|00000b40| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000b50| 20 20 20 20 20 11 32 31 | 20 20 20 20 32 20 20 20 | .21| 2 |
|00000b60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b70| 20 31 20 20 20 20 20 20 | 20 32 0d 0a 00 0d 0b 00 | 1 | 2......|
|00000b80| 11 31 41 20 66 75 6e 63 | 74 69 6f 6e 20 11 33 66 |.1A func|tion .3f|
|00000b90| 20 11 31 69 73 20 12 31 | 63 6f 6e 73 74 61 6e 74 | .1is .1|constant|
|00000ba0| 12 30 20 6f 6e 20 61 6e | 20 69 6e 74 65 72 76 61 |.0 on an| interva|
|00000bb0| 6c 20 69 66 2c 20 66 6f | 72 20 61 6e 79 20 11 33 |l if, fo|r any .3|
|00000bc0| 78 20 20 11 31 61 6e 64 | 20 11 33 78 20 20 11 31 |x .1and| .3x .1|
|00000bd0| 69 6e 20 74 68 65 0d 0b | 00 20 20 20 20 20 20 20 |in the..|. |
|00000be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00000c10| 31 20 20 20 20 20 20 32 | 0d 0a 00 11 31 69 6e 74 |1 2|....1int|
|00000c20| 65 72 76 61 6c 2c 0d 0a | 00 0d 0b 00 20 20 20 20 |erval,..|.... |
|00000c30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c40| 20 20 20 20 20 20 20 20 | 11 33 66 11 31 28 11 33 | |.3f.1(.3|
|00000c50| 78 20 11 31 29 20 3d 20 | 11 33 66 11 31 28 11 33 |x .1) = |.3f.1(.3|
|00000c60| 78 20 11 31 29 2e 0d 0b | 00 20 20 20 20 20 20 20 |x .1)...|. |
|00000c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c80| 20 20 20 20 20 20 20 20 | 11 32 31 20 20 20 20 20 | |.21 |
|00000c90| 20 20 32 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 2 | |
|00000ca0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000cb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000cc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000cd0| 20 20 20 20 20 20 11 31 | 2e 0d 0a 00 53 65 63 74 | .1|....Sect|
|00000ce0| 69 6f 6e 20 32 2e 33 20 | 20 41 6e 61 6c 79 7a 69 |ion 2.3 | Analyzi|
|00000cf0| 6e 67 20 47 72 61 70 68 | 73 20 6f 66 20 46 75 6e |ng Graph|s of Fun|
|00000d00| 63 74 69 6f 6e 73 0d 0b | 00 49 6e 20 53 65 63 74 |ctions..|.In Sect|
|00000d10| 69 6f 6e 20 31 2e 31 2c | 20 79 6f 75 20 6c 65 61 |ion 1.1,| you lea|
|00000d20| 72 6e 65 64 20 61 62 6f | 75 74 20 74 68 65 20 64 |rned abo|ut the d|
|00000d30| 69 66 66 65 72 65 6e 74 | 20 74 79 70 65 73 20 6f |ifferent| types o|
|00000d40| 66 20 73 79 6d 6d 65 74 | 72 79 20 74 68 61 74 20 |f symmet|ry that |
|00000d50| 61 20 67 72 61 70 68 0d | 0a 00 63 61 6e 20 70 6f |a graph.|..can po|
|00000d60| 73 73 65 73 73 2e 20 20 | 41 20 66 75 6e 63 74 69 |ssess. |A functi|
|00000d70| 6f 6e 20 69 73 20 12 31 | 65 76 65 6e 12 30 20 69 |on is .1|even.0 i|
|00000d80| 66 20 69 74 73 20 67 72 | 61 70 68 20 69 73 20 73 |f its gr|aph is s|
|00000d90| 79 6d 6d 65 74 72 69 63 | 20 77 69 74 68 20 72 65 |ymmetric| with re|
|00000da0| 73 70 65 63 74 20 74 6f | 0d 0a 00 74 68 65 20 11 |spect to|...the .|
|00000db0| 33 79 11 31 2d 61 78 69 | 73 2e 20 20 41 20 66 75 |3y.1-axi|s. A fu|
|00000dc0| 6e 63 74 69 6f 6e 20 69 | 73 20 12 31 6f 64 64 12 |nction i|s .1odd.|
|00000dd0| 30 20 69 66 20 69 74 73 | 20 67 72 61 70 68 20 69 |0 if its| graph i|
|00000de0| 73 20 73 79 6d 6d 65 74 | 72 69 63 20 77 69 74 68 |s symmet|ric with|
|00000df0| 20 72 65 73 70 65 63 74 | 20 74 6f 20 74 68 65 0d | respect| to the.|
|00000e00| 0a 00 6f 72 69 67 69 6e | 2e 20 20 54 68 65 20 73 |..origin|. The s|
|00000e10| 79 6d 6d 65 74 72 79 20 | 74 65 73 74 73 20 67 69 |ymmetry |tests gi|
|00000e20| 76 65 6e 20 69 6e 20 53 | 65 63 74 69 6f 6e 20 31 |ven in S|ection 1|
|00000e30| 2e 31 20 6c 65 61 64 73 | 20 74 6f 20 74 68 65 20 |.1 leads| to the |
|00000e40| 66 6f 6c 6c 6f 77 69 6e | 67 20 74 65 73 74 73 0d |followin|g tests.|
|00000e50| 0a 00 66 6f 72 20 65 76 | 65 6e 20 61 6e 64 20 6f |..for ev|en and o|
|00000e60| 64 64 20 66 75 6e 63 74 | 69 6f 6e 73 2e 0d 0a 00 |dd funct|ions....|
|00000e70| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000e80| 20 20 20 20 20 20 20 20 | 20 20 12 31 54 65 73 74 | | .1Test|
|00000e90| 73 20 66 6f 72 20 45 76 | 65 6e 20 61 6e 64 20 4f |s for Ev|en and O|
|00000ea0| 64 64 20 46 75 6e 63 74 | 69 6f 6e 73 12 30 0d 0a |dd Funct|ions.0..|
|00000eb0| 00 0d 0b 00 41 20 66 75 | 6e 63 74 69 6f 6e 20 67 |....A fu|nction g|
|00000ec0| 69 76 65 6e 20 62 79 20 | 11 33 79 20 11 31 3d 20 |iven by |.3y .1= |
|00000ed0| 11 33 66 11 31 28 11 33 | 78 11 31 29 20 69 73 20 |.3f.1(.3|x.1) is |
|00000ee0| 65 76 65 6e 20 69 66 2c | 20 66 6f 72 20 65 61 63 |even if,| for eac|
|00000ef0| 68 20 11 33 78 20 11 31 | 69 6e 20 74 68 65 20 64 |h .3x .1|in the d|
|00000f00| 6f 6d 61 69 6e 20 6f 66 | 20 11 33 66 11 31 2c 0d |omain of| .3f.1,.|
|00000f10| 0a 00 0d 0b 00 20 20 20 | 20 20 11 33 66 11 31 28 |..... | .3f.1(|
|00000f20| 2d 11 33 78 11 31 29 20 | 3d 20 11 33 66 11 31 28 |-.3x.1) |= .3f.1(|
|00000f30| 11 33 78 11 31 29 2e 0d | 0a 00 0d 0b 00 41 20 66 |.3x.1)..|.....A f|
|00000f40| 75 6e 63 74 69 6f 6e 20 | 67 69 76 65 6e 20 62 79 |unction |given by|
|00000f50| 20 11 33 79 20 11 31 3d | 20 11 33 66 11 31 28 11 | .3y .1=| .3f.1(.|
|00000f60| 33 78 11 31 29 20 69 73 | 20 6f 64 64 20 69 66 2c |3x.1) is| odd if,|
|00000f70| 20 66 6f 72 20 65 61 63 | 68 20 11 33 78 20 11 31 | for eac|h .3x .1|
|00000f80| 69 6e 20 74 68 65 20 64 | 6f 6d 61 69 6e 20 6f 66 |in the d|omain of|
|00000f90| 20 11 33 66 11 31 2c 0d | 0a 00 0d 0b 00 20 20 20 | .3f.1,.|..... |
|00000fa0| 20 20 11 33 66 11 31 28 | 2d 11 33 78 11 31 29 20 | .3f.1(|-.3x.1) |
|00000fb0| 3d 20 2d 11 33 66 11 31 | 28 11 33 78 11 31 29 2e |= -.3f.1|(.3x.1).|
|00000fc0| 0d 0a 00 0d 0b 00 53 65 | 63 74 69 6f 6e 20 32 2e |......Se|ction 2.|
|00000fd0| 33 20 20 41 6e 61 6c 79 | 7a 69 6e 67 20 47 72 61 |3 Analy|zing Gra|
|00000fe0| 70 68 73 20 6f 66 20 46 | 75 6e 63 74 69 6f 6e 73 |phs of F|unctions|
|00000ff0| 54 6f 20 62 65 63 6f 6d | 65 20 67 6f 6f 64 20 61 |To becom|e good a|
|00001000| 74 20 73 6b 65 74 63 68 | 69 6e 67 20 74 68 65 20 |t sketch|ing the |
|00001010| 67 72 61 70 68 73 20 6f | 66 20 66 75 6e 63 74 69 |graphs o|f functi|
|00001020| 6f 6e 73 2c 20 69 74 20 | 68 65 6c 70 73 20 74 6f |ons, it |helps to|
|00001030| 20 62 65 20 66 61 6d 69 | 6c 69 61 72 0d 0a 00 77 | be fami|liar...w|
|00001040| 69 74 68 20 74 68 65 20 | 12 31 67 72 61 70 68 73 |ith the |.1graphs|
|00001050| 20 6f 66 20 73 6f 6d 65 | 20 63 6f 6d 6d 6f 6e 20 | of some| common |
|00001060| 66 75 6e 63 74 69 6f 6e | 73 12 30 2e 0d 0a 00 0d |function|s.0.....|
|00001070| 0a 00 0d 0a 00 0d 0b 00 | 14 74 33 2d 35 2d 35 61 |........|.t3-5-5a|
|00001080| 2e 6d 14 30 14 35 14 32 | 34 14 38 14 20 20 14 74 |.m.0.5.2|4.8. .t|
|00001090| 33 2d 35 2d 35 62 2e 6d | 14 32 36 14 35 14 32 34 |3-5-5b.m|.26.5.24|
|000010a0| 14 38 14 20 20 14 74 33 | 2d 35 2d 35 63 2e 6d 14 |.8. .t3|-5-5c.m.|
|000010b0| 35 31 14 35 14 33 32 14 | 38 14 0d 0a 00 0d 0a 00 |51.5.32.|8.......|
|000010c0| 0d 0a 00 0d 0a 00 0d 0a | 00 0d 0a 00 0d 0a 00 14 |........|........|
|000010d0| 74 33 2d 35 2d 35 64 2e | 6d 14 30 14 32 31 14 32 |t3-5-5d.|m.0.21.2|
|000010e0| 34 14 38 14 20 20 14 74 | 33 2d 35 2d 35 65 2e 6d |4.8. .t|3-5-5e.m|
|000010f0| 14 32 36 14 32 31 14 32 | 34 14 38 14 20 20 14 74 |.26.21.2|4.8. .t|
|00001100| 33 2d 35 2d 35 66 2e 6d | 14 35 32 14 32 31 14 32 |3-5-5f.m|.52.21.2|
|00001110| 34 14 38 14 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |4.8.....|........|
|00001120| 0d 0a 00 0d 0a 00 0d 0a | 00 53 65 63 74 69 6f 6e |........|.Section|
|00001130| 20 32 2e 33 20 20 41 6e | 61 6c 79 7a 69 6e 67 20 | 2.3 An|alyzing |
|00001140| 47 72 61 70 68 73 20 6f | 66 20 46 75 6e 63 74 69 |Graphs o|f Functi|
|00001150| 6f 6e 73 0d 0b 00 54 68 | 65 20 67 72 61 70 68 73 |ons...Th|e graphs|
|00001160| 20 6f 66 20 6d 61 6e 79 | 20 63 6f 6d 6d 6f 6e 20 | of many| common |
|00001170| 66 75 6e 63 74 69 6f 6e | 73 20 64 6f 20 6e 6f 74 |function|s do not|
|00001180| 20 68 61 76 65 20 61 6e | 79 20 62 72 65 61 6b 73 | have an|y breaks|
|00001190| 20 69 6e 20 74 68 65 69 | 72 20 67 72 61 70 68 73 | in thei|r graphs|
|000011a0| 2e 0d 0a 00 54 68 65 72 | 65 20 69 73 20 61 20 77 |....Ther|e is a w|
|000011b0| 65 6c 6c 2d 6b 6e 6f 77 | 6e 20 66 75 6e 63 74 69 |ell-know|n functi|
|000011c0| 6f 6e 20 77 68 6f 73 65 | 20 67 72 61 70 68 20 64 |on whose| graph d|
|000011d0| 6f 65 73 20 68 61 76 65 | 20 6d 61 6e 79 20 62 72 |oes have| many br|
|000011e0| 65 61 6b 73 2e 20 20 49 | 74 20 69 73 0d 0a 00 63 |eaks. I|t is...c|
|000011f0| 61 6c 6c 65 64 20 74 68 | 65 20 12 31 67 72 65 61 |alled th|e .1grea|
|00001200| 74 65 73 74 20 69 6e 74 | 65 67 65 72 20 66 75 6e |test int|eger fun|
|00001210| 63 74 69 6f 6e 12 30 2e | 0d 0a 00 20 20 20 20 20 |ction.0.|... |
|00001220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001230| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001240| 20 20 20 20 20 20 20 11 | 34 5b 32 20 20 20 32 5d | .|4[2 2]|
|00001250| 0d 0b 00 11 31 54 68 65 | 20 67 72 65 61 74 65 73 |....1The| greates|
|00001260| 74 20 69 6e 74 65 67 65 | 72 20 66 75 6e 63 74 69 |t intege|r functi|
|00001270| 6f 6e 20 69 73 20 64 65 | 6e 6f 74 65 64 20 62 79 |on is de|noted by|
|00001280| 20 11 34 21 21 20 11 33 | 78 20 11 34 21 21 20 11 | .4!! .3|x .4!! .|
|00001290| 31 61 6e 64 20 69 73 20 | 64 65 66 69 6e 65 64 20 |1and is |defined |
|000012a0| 62 79 20 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |by ... | |
|000012b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012d0| 20 20 11 34 6c 32 20 20 | 20 32 6a 0d 0a 00 20 20 | .4l2 | 2j... |
|000012e0| 20 20 20 20 20 20 20 5b | 32 20 20 20 32 5d 0d 0b | [|2 2]..|
|000012f0| 00 20 20 20 20 20 20 20 | 20 20 21 21 20 11 33 78 |. | !! .3x|
|00001300| 20 11 34 21 21 20 11 31 | 3d 20 74 68 65 20 67 72 | .4!! .1|= the gr|
|00001310| 65 61 74 65 73 74 20 69 | 6e 74 65 67 65 72 20 6c |eatest i|nteger l|
|00001320| 65 73 73 20 74 68 61 6e | 20 6f 72 20 65 71 75 61 |ess than| or equa|
|00001330| 6c 20 74 6f 20 11 33 78 | 11 31 2e 0d 0b 00 20 20 |l to .3x|.1.... |
|00001340| 20 20 20 20 20 20 20 11 | 34 6c 32 20 20 20 32 6a | .|4l2 2j|
|00001350| 0d 0a 00 11 31 54 68 65 | 20 67 72 61 70 68 20 6f |....1The| graph o|
|00001360| 66 20 74 68 69 73 20 66 | 75 6e 63 74 69 6f 6e 20 |f this f|unction |
|00001370| 69 73 20 73 68 6f 77 6e | 20 61 74 20 74 68 65 0d |is shown| at the.|
|00001380| 0a 00 72 69 67 68 74 2e | 20 20 4e 6f 74 65 20 74 |..right.| Note t|
|00001390| 68 61 74 20 74 68 65 20 | 67 72 61 70 68 20 6a 75 |hat the |graph ju|
|000013a0| 6d 70 73 20 76 65 72 74 | 69 63 61 6c 6c 79 0d 0a |mps vert|ically..|
|000013b0| 00 6f 6e 65 20 75 6e 69 | 74 20 61 74 20 65 61 63 |.one uni|t at eac|
|000013c0| 68 20 69 6e 74 65 67 65 | 72 20 61 6e 64 20 69 73 |h intege|r and is|
|000013d0| 20 63 6f 6e 73 74 61 6e | 74 0d 0a 00 62 65 74 77 | constan|t...betw|
|000013e0| 65 65 6e 20 65 61 63 68 | 20 70 61 69 72 20 6f 66 |een each| pair of|
|000013f0| 20 63 6f 6e 73 65 63 75 | 74 69 76 65 20 69 6e 74 | consecu|tive int|
|00001400| 65 67 65 72 73 2e 20 20 | 20 20 20 20 20 14 74 33 |egers. | .t3|
|00001410| 2d 35 2d 39 2e 6d 14 34 | 39 14 31 38 14 35 30 14 |-5-9.m.4|9.18.50.|
|00001420| 38 14 0d 0a 00 0d 0b 00 | 42 65 63 61 75 73 65 20 |8.......|Because |
|00001430| 6f 66 20 74 68 65 20 6a | 75 6d 70 73 20 69 6e 20 |of the j|umps in |
|00001440| 69 74 73 20 67 72 61 70 | 68 2c 20 74 68 65 0d 0a |its grap|h, the..|
|00001450| 00 67 72 65 61 74 65 73 | 74 20 69 6e 74 65 67 65 |.greates|t intege|
|00001460| 72 20 66 75 6e 63 74 69 | 6f 6e 20 69 73 20 61 6e |r functi|on is an|
|00001470| 20 65 78 61 6d 70 6c 65 | 0d 0a 00 6f 66 20 61 20 | example|...of a |
|00001480| 63 61 74 65 67 6f 72 79 | 20 6f 66 20 66 75 6e 63 |category| of func|
|00001490| 74 69 6f 6e 73 20 63 61 | 6c 6c 65 64 20 12 31 73 |tions ca|lled .1s|
|000014a0| 74 65 70 0d 0a 00 66 75 | 6e 63 74 69 6f 6e 73 12 |tep...fu|nctions.|
|000014b0| 30 2e 0d 0a 00 3a 00 00 | 00 79 01 00 00 4d 2a 00 |0....:..|.y...M*.|
|000014c0| 00 10 00 00 00 00 00 00 | 00 73 32 2d 33 00 dd 01 |........|.s2-3...|
|000014d0| 00 00 4f 02 00 00 4d 2a | 00 00 b3 01 00 00 00 00 |..O...M*|........|
|000014e0| 00 00 73 32 2d 33 2d 31 | 00 56 04 00 00 36 04 00 |..s2-3-1|.V...6..|
|000014f0| 00 4d 2a 00 00 2c 04 00 | 00 00 00 00 00 73 32 2d |.M*..,..|.....s2-|
|00001500| 33 2d 32 00 b6 08 00 00 | 26 04 00 00 4d 2a 00 00 |3-2.....|&...M*..|
|00001510| 8c 08 00 00 00 00 00 00 | 73 32 2d 33 2d 33 00 06 |........|s2-3-3..|
|00001520| 0d 00 00 c0 02 00 00 4d | 2a 00 00 dc 0c 00 00 00 |.......M|*.......|
|00001530| 00 00 00 73 32 2d 33 2d | 34 00 f0 0f 00 00 39 01 |...s2-3-|4.....9.|
|00001540| 00 00 4d 2a 00 00 c6 0f | 00 00 00 00 00 00 73 32 |..M*....|......s2|
|00001550| 2d 33 2d 35 00 53 11 00 | 00 62 03 00 00 4d 2a 00 |-3-5.S..|.b...M*.|
|00001560| 00 29 11 00 00 00 00 00 | 00 73 32 2d 33 2d 36 00 |.)......|.s2-3-6.|
+--------+-------------------------+-------------------------+--------+--------+